
PHYSICAL REVIEW E 69, 016107 ~2004!
Condensation transitions in a two-species zero-range process

T. Hanney and M. R. Evans
School of Physics, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom

~Received 14 August 2003; published 22 January 2004!

We study condensation transitions in the steady state of a zero-range process with two species of particles.
The steady state is exactly soluble—it is given by a factorized form provided the dynamics satisfy certain
constraints—and we exploit this to derive the phase diagram for a quite general choice of dynamics. This phase
diagram contains a variety of mechanisms of condensate formation, and a phase in which the condensate of one
of the particle species is sustained by a ‘‘weak’’ condensate of particles of the other species. We also demon-
strate how a single particle of one of the species~which plays the role of a defect particle! can induce Bose
condensation above a critical density of particles of the other species.

DOI: 10.1103/PhysRevE.69.016107 PACS number~s!: 05.70.Fh, 02.50.Ey, 64.60.2i
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I. INTRODUCTION

Condensation phenomena are observed in a variet
contexts. For instance, microscopic dynamics including p
ticle diffusion, aggregation to form particle clusters, a
fragmentation of these clusters can be used to model a n
ber of physical systems@1,2#. In one dimension, such mode
have been analyzed within mean field theory@1# or using a
scaling approach@2# to infer the existence of transitions be
tween a fluid phase and a condensate phase. Another co
is the modeling of granular and traffic flow@3#. One such
model is the ‘‘Bus Route model’’@4#, where there is a cross
over between a regime in which the average velocity
buses is determined by the velocity of the slowest bus, a
above a critical density of buses, a regime in which the
erage bus velocity is limited instead by the high density
traffic. This crossover can be understood in terms of a c
densation process. Further, several models have been s
to undergo phase separation in one dimension@5,6#. This
phase separation can also be related to a condens
mechanism. In particular, a general criterion has been
posed, predicting the existence of phase separation ind
driven systems, which appears to be widely applicable@7#.
This applicability follows from the robust nature of th
physical mechanism underlying the phase separation.
mechanism, which is also the generic mechanism for
aforementioned condensation phenomena, is understoo
terms of condensation transitions in the zero-range pro
@8#.

The zero-range process is a system of many interac
particles which move on a lattice—particles hop to adjac
lattice sites with hop rates determined by the number of p
ticles present at the departure site. It provides insight into
behavior of more complicated models because it is exa
soluble: the steady state assumes a simple, factorized f
This factorized form holds for an arbitrary lattice in any d
mension, although for simplicity the one-dimensional mo
in usually considered. Thus the condensation transitio
whereby a finite fraction of particles occupy a single site,
amenable to exact analysis. Condensation transitions in
single-species zero-range process proceed through on
two mechanisms:~i! if the particle hop rates are site depe
dent, then above a critical density a condensate forms a
1063-651X/2004/69~1!/016107~8!/$22.50 69 0161
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site where the hop rate is slowest—this mechanism is clo
related to Bose condensation,~ii ! if the particle hop rates
depend on the number of particles present at the depa
site, then above a critical density, and provided t
asymptotic dependence decays to a constant value s
ciently quickly, a condensate forms at a site located
random—thus the transition is accompanied by a sponta
ously broken symmetry. The former mechanism here dem
strates how disorder can induce condensation, analysis o
latter leads to an understanding of the generic mechanism
condensate formation applicable to the examples descr
above.

A question which naturally arises then is what other g
neric mechanisms of condensate formation exist. To this e
we consider the generalization of the zero-range proces
two species of particles. We investigate how the interact
of the two species allows a variety of mechanisms of c
densate formation.

The zero-range process with two species of particles
introduced in Refs.@9,10# where the steady state was o
tained exactly and shown to be given by a simple factoriz
form provided the dynamics satisfy certain constraints.
Ref. @9#, this was used to demonstrate a new mechanism
condensation transition for a specific choice of dynami
and in@10# the hydrodynamics were derived. Here, we sh
how the two-species model may undergo a wide variety
condensation transitions, and we derive the phase diag
for the model for a quite general choice of dynamics. Als
we show that the steady state of the model can be map
onto the steady state of the Arndt-Heinzel-Rittenberg~AHR!
model@5#—a model which undergoes a transition betwee
disordered~fluid! phase and a phase separated~condensate!
phase. Thus, as in the single-species model, the two-spe
zero-range process exhibits transitions of a robust na
which can provide insight into condensation mechanisms
more complicated models. In particular, one perspective
the two-species model is to consider one species as provi
an evolving landscape upon which the other species in
evolves. This evolution is coupled, thus condensation tra
tions are induced by the evolving disordered backgrou
Again, such interplay arises in a variety of physical settin
@11–13#. Our aim is to explore how this interplay can lead
©2004 The American Physical Society07-1
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condensation transitions in the two-species zero-range
cess.

We begin by reviewing in Sec. II the key equations of t
steady state solution, which form the basis of the subseq
analysis. In Sec. III, we show how a defect particle~i.e., a
single particle of one of the species! can induce a condensa
tion transition in the particles of the other species. We c
sider in Sec. IV the case where the hop rates of one of
particle species depend only on the number of particles
the other species at the departure site. We show how to
rive the phase diagram for this case and find that three
tinct condensate phases can arise; numerical iterations o
exact recursion relation for the partition function yield r
sults consistent with the predicted phases. In Sec. V
present a mapping between the steady state of the
species zero-range process and the AHR model. We conc
in Sec. VI.

II. STEADY STATE

We define the two-species zero-range process on a la
containingL sites and with periodic boundary conditions. O
this lattice, there areN particles of speciesA andM particles
of speciesB. Particles of both species hop to the near
neighbor site to the right, speciesA with rateu(nl ,ml) and
speciesB with rate v(nl ,ml), where sitel is the departure
site and containsnl particles of speciesA andml particles of
speciesB. Although we consider a one-dimensional lattic
the factorized steady state holds for a hypercubic lattice
any dimension. Therefore all the phase transitions that fol
also hold in any dimension.

Since the steady state has already been derived in d
elsewhere@9,10#, we quote only the key results here. W
defineP($nl%;$ml%) to be the probability of finding the sys
tem in the configuration ($nl%;$ml%), where $nl%
5n1 , . . . ,nL and $ml%5m1 , . . . ,mL . This is given by a
factorized form

P~$nl%;$ml%!5ZL,N,M
21 )

l 51

L

f ~nl ,ml !, ~1!

whereZL,N,M is a normalization. The steady state~1! satisfies
the steady state master equation if the factorsf (nl ,ml) sat-
isfy

u~nl ,ml ! f ~nl ,ml !

f ~nl21,ml !
51 and

v~nl ,ml ! f ~nl ,ml !

f ~nl ,ml21!
51.

~2!

The solution to these equations is

f ~nl ,ml !5)
i 51

nl

@u~ i ,ml !#
21)

j 51

ml

@v~0,j !#21, ~3!

provided the hop rates satisfy the constraint

u~nl ,ml !

u~nl ,ml21!
5

v~nl ,ml !

v~nl21,ml !
, ~4!
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for nl ,mlÞ0—the choices ofu(nl ,0) andv(0,ml) remain
unconstrained. We emphasize that instead of specifying
hop rates directly, we have the freedom to choose any
sired form for f (n,m) and that we can then infer the ho
rates from Eq.~2!.

The normalizationZL,N,M , defined in Eq.~1!, plays a role
analogous to the canonical partition function of equilibriu
statistical mechanics, and is given by

ZL,N,M5 (
$nl %,$ml %

dS (
l 51

L

nl2ND dS (
l 51

L

ml2M D
3)

l 51

L

f ~nl ,ml !, ~5!

where thed-functions ensure that the system contains
correct numbers of particles of each species. By writing
d-functions in an integral representation,ZL,N,M becomes

ZL,N,M5 R dz

2p i R dy

2p i

@F~z,y!#L

zN11yM11
, ~6!

where the generating functionF(z,y) has been defined as

F~z,y!5 (
n50

`

(
m50

`

znymf ~n,m!. ~7!

We consider in Sec. IV the limitL,N,M→`, where rA
5N/L andrB5M /L—the particle densities of speciesA and
B, respectively—are held fixed. In this limit, we assume th
the integral in Eq.~6! is dominated by the saddle point. Th
equations for the saddle point are

rA5z
]

]z
ln F~z,y!, rB5y

]

]y
ln F~z,y!. ~8!

Assuming the saddle point is valid, Eqs.~8! determinerA
andrB in terms ofz andy and this amounts to working in a
grand canonical ensemble. We note that for the saddle p
to be valid,z andy cannot exceed the radii of convergence
F(z,y), since we must be able to perform the sum~7! in the
first place. Further, since all derivatives ofF(z,y) are posi-
tive, the saddle point, if valid, must be unique. In Sec. IV w
will find that it is not always possible to solve the sadd
point equations for all values ofrA and rB in the allowed
ranges ofz and y. This phenomenon corresponds to a co
densation transition.

III. DEFECT PARTICLE

In this section, we consider how condensation may a
when there is only a single particle of speciesB. The hop
rates of theA particles are chosen to be

u~n,0!51 and u~n,1!5p, ~9!

wherep,1, such that theA particles hop more slowly when
the B particle is present~but they hop independently ofn).
7-2
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Thus we view theB particle as a defect particle. The co
straint on the hop rates~4! then requires that the hop rate
the B particle is

v~n,0!50 and v~n,1!5pn. ~10!

Substituting these dynamics into Eq.~3!, one finds that
f (n,0)51 andf (n,1)5p2n. For this model, we can evaluat
Eq. ~5! as a finite sum~i.e., we can work directly in the
canonical ensemble!. Taking theB particle to be at sitek one
obtains

ZL,N,M5L(
$nl %

dS (
l 51

L

nl2ND p2nk ~11!

5L (
nk50

N S L221N2nk

L22 D p2nk. ~12!

This is the same normalization~up to an overall factor ofL)
as that derived for the single-species model with hetero
neous hop rates, in the case where particles hop from all
with rate 1 except for a single defect site from which p
ticles hop with ratep @8#. Thus, using the results of Ref.@3#,
one can identify two regimes: a low density phase, wh
rA,p/(12p), and the system is in a fluid phase; and a h
density phase, whenrA.p/(12p), and a Bose condensa
forms at the site containing the defect particle. These regi
can be computed exactly by considering the normaliza
~12!, and seeing that the sum may be dominated either
nk;O(1), in which caserA,p/(12p), or bynk;O(L), in
which caserA.p/(12p) @8#. The condensate then contain
a finite fraction of all the particles in the system—the r
maining particles form a power law distributed backgroun
It is a Bose condensate in the sense that the particles
dense onto the site containing the defect particle~in the same
way that in Bose condensation, the particles condense
the state of lowest energy: the equivalence is observed
identifying the site containing the defect particle in the ze
range process with the state of lowest energy in the B
gas!.

A condensation transition of this kind persists as long
we have a finite number of~indistinguishable! defect par-
ticles: let us say there areM defect particles where in th
limit L→`, we keepM fixed. Also, the hop rates for theA
particles areu(n,m)5pm wherem51, . . . ,M . If the small-
est of these hop rates ispi , then above a critical density ofA
particles, all the sites containingi particles of speciesB con-
tain a finite fraction of all the particles of speciesA. But
because there can only be a finite number of such sites,
of these sites must contain an infinite number of particles
speciesA—the condensate is distributed equally among
sites containingi particles of speciesB.

The analysis of this section leads us to view the def
particle~s! as a disordered background upon whichA par-
ticles evolve. The special feature of the two-species mode
that this background may also evolve with prescribed
namics. This is the case we consider in the following sect
when the number ofB particles is extensive.
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IV. FINITE DENSITIES OF BOTH SPECIES

With the perspective of particle dynamics on an evolvi
disordered background, a case of particular interest in
two-species zero-range process is when the evolution of
species, theB particles say, depends only on the number
particles of the other species at a site. Therefore we t
v(n,m)511r (n) for m.0, wherer (n) is a general func-
tion of n. Then from Eq.~2! we deduce thatf (n,m) is given
by

f ~n,m!5@11r ~n!#2ms~n!, ~13!

wheres(n) is another general function ofn. We then use Eq.
~2! to infer the ratesu(n,m):

u~n,m!5S 11r ~n21!

11r ~n! D 2m s~n21!

s~n!
. ~14!

We assume in the following thatr (n) is a monotonically
decreasing function ofn, and that in the limitn→`, r (n)
→01. Inserting the form~13! into Eq. ~7!, and performing
the sum overm, yields

F~z,y!5 (
n50

`

s~n!zn
11r ~n!

11r ~n!2y
, ~15!

z
]

]z
F~z,y!5 (

n50

`

ns~n!zn
11r ~n!

11r ~n!2y
, ~16!

y
]

]y
F~z,y!5 (

n50

`

s~n!zn
y@11r ~n!#

@11r ~n!2y#2
. ~17!

These equations determinez and y, given the densitiesrA
and rB , via Eq. ~8!. The radius of convergence of the su
over m is y51 and we take, without loss of generality, th
radius convergence of the sum overn to bez51.

To analyze the possible transitions, we need to elucid
the behavior ofrA andrB when considered as a function o
z and y. This will enable us to draw graphs of the depe
dences ofrA andrB on y, for fixed values ofz, from which
we can determine the densities for which the saddle p
approximation remains valid. In particular, we wish to co
sider howrA andrB change asz andy approach their radii of
convergence—ifrA or rB tends towards a finite value, the
condensation ensues. To this end, we make the follow
observations.

~1! For fixed z, rA and rB are monotonically increasing
functions ofy.

~2! For z→0, rA→0.
~3! For y→0, rB→0.
~4! For z,1, rB is finite for all y ~including y51).
We supplement these observations with the followi

three conditions onr (n) ands(n), which determine whethe
rA andrB converge to finite or infinite values whenz andy
approach their radii of convergence. Forz→1 andy,1, if,
asn→`,

ns~n!→0 faster than 1/n, ~18!
7-3
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FIG. 1. Schematic dependences, forb,2, of the particle densitiesrA andrB for contours of fixedz and as a function ofy. The dashed
line in the right-hand graph illustrates howrB varies as a function ofz andy given thatrA is fixed ~dashed line in left-hand graph!.
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thenrA→finite. Forz→1 andy→1, if, asn→`,

ns~n!

r ~n!
→0 faster than 1/n, ~19!

thenrA→finite. Forz→1 andy→1, if, asn→`,

s~n!

r ~n!2
→0 faster than 1/n, ~20!

thenrB→finite. These observations and conditions enum
ate all possible ways thatz and y approach their radii of
convergence, and therefore all the possible circumstance
which condensation can occur in our model. The phase
havior depends on which of the conditions~18!–~20! are met
and which are not.

There are several possibilities, which we illustrate fo
particular choice ofr (n) ands(n), namely, for largen,

s~n!;n2b, r ~n!;cn21, ~21!

whereb andc.0 are constants. Thus the asymptotic form
of the hop rates for largen are given by

u~n,m!;~12c/n2!m~11b/n! and v~n,m!;11c/n.
~22!

We note that whenc50 the two species hop independent
in this case, the asymptotic hop rates of theA particles re-
duce to those considered in Ref.@8# for the single-species
zero-range process, where condensation was found abo
critical density providedb.2.

With the choice~21!, condition ~18! is satisfied ifb.2
and conditions~19! and~20! are satisfied ifb.3. Therefore
there are three cases to consider.

Case 1: b,2. In this case, none of the conditions~18!–
~20! is met. The particular choice of rates studied in Ref.@9#
corresponds to this case. The dependences ofrA andrB on y
for fixed values ofz are shown in Fig. 1, where 0,z1,z2
,1. Here, for a givenrA , z must lie in the rangez1<z
<z2. However, in this range,rB increases monotonically
from rB50, wherey50 andz5z2, to a maximum value a
01610
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y51 andz5z1. If rB exceeds this maximum then we can n
longer solve the saddle point equations~8! for both rA and
rB and the excessB particles condense onto a single sit
Therefore wheneverrB exceeds arA-dependent maximum
the system is in a condensate phase. Otherwise the syste
in a fluid phase. The critical line, given as a function ofz for
y51, is shown in Fig. 2. The explicit expression for th
critical line is

rB5~11rA!/c. ~23!

The condensate ofB particles @which containsO(L) par-
ticles# is induced by the distribution ofA particles. In par-
ticular, at the site containing theB particle condensate, theA
particles form a ‘‘weak’’ condensate@which containsO(L1/2)
particles#. To see this, note that the current ofA particles
must be finite, thereforeu(n,m) must be finite at the con
densate site. With the rates inferred from Eq.~21!, if m
→` thenu(n,m)→0 unless we also haven→`. Therefore
taking n large one finds thatu(n,m);exp(2m/n2). Since
this must be finite we must havem;n2 at the condensate
site. Then, becausem;O(L), we must haven;O(L1/2).
Away from the condensate site, theB particles form a power
law distributed background and theA particles form an ex-
ponentially distributed background.

We can understand the weak condensate ofA particles by
considering a zero-range process with a single defect

FIG. 2. Phase diagram for case 1,b,2. Phase I is a fluid phase
in phase II theB particles form a condensate sustained by a ‘‘wea
condensate ofA particles, as described in the text.fA andfB de-
note the numbers of particles contained in the condensates ofA and
B particles, respectively.
7-4
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FIG. 3. Schematic dependences, for 2,b,3, of the particle densitiesrA andrB for contours of fixedz and as a function ofy. See text
for details.
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Consider a single species of particles—theA particles—
which hop with rateu(n)51 except at the defect site, whe
they hop with rateu(n)5exp(2gL/n2) (g is a constant!. The
hop rate from the defect site reflects the effect of theB par-
ticle condensate on theA particles in the two-species mode
At the defect site,u(n)→0 if n is small and so a condensa
forms. But since the hop rate must remain finite, the cond
sate containsn;O(L1/2) particles. Hence, from the perspe
tive of the A particles, the condensate ofB particles in the
two-species model plays the role of a defect site.

Case 2: 2,b,3. In this case, only condition~18! is met:
rA is finite for z51 providedy,1. In this case, the depen
dences ofrA andrB on y for fixed values ofz are shown in
Fig. 3, again where 0,z1,z2,1. This time, imagine tha
the system is in the fluid phase, with densitiesrA and rB
~and therefore values ofz andy) corresponding to pointA in
Fig. 3. Now, if we add moreA particles to the system while
keeping the density ofB particles fixed, we find that we mus
increasez and decreasey as indicated by the dashed lin
However, whenz reaches 1, if we add moreA particles to the
system we can no longer solve the saddle point equation
z and y, therefore theA particles must undergo a transitio
from a fluid phase to a condensate phase. The critical lin
given by z51—the critical density ofA particles increases
with increasingrB . We have not been able to find an explic
expression for this critical line. Also note that aty51, the
system must undergo a transition between a fluid phase a
condensate ofB particles as described in the previous ca
Thus we deduce the phase diagram shown in Fig. 4. The
critical curves intersect whenrA5` and rB5`. In phase
III, the condensate ofA particles exists on a power law dis
tributed background ofA particles while theB particles are
exponentially distributed throughout the system. It is int
esting to consider the sequence of transitions induced
increasingrB : starting from a point in phase III, the conde
sate ofA particles is destroyed by increasing the density oB
particles sufficiently, when the system enters the fluid ph
I. IncreasingrB further leads the system to phase II whe
the B particles condense.

Case 3: b.3. Here, all the conditions~18!–~20! are sat-
isfied. The arguments of the previous two cases apply
01610
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now, the critical curves given byz51 on the one hand and
y51 on the other intersect at finite values of bothrA and
rB . Therefore when theA and B particle densities excee
their values given byz51 and y51 the system enters
phase where both species form a condensate at the same
In this phase, the background distributions ofA and B par-
ticles are both given by power laws. The phase diagram
this case is shown in Fig. 5.

We have confirmed the existence of the four phases
sented in this section numerically. Exact expressions
P(n), the probability of finding exactlyn A particles at a
site, andP(m), the probability of finding exactlym B par-
ticles at a site, can be obtained in terms of the normaliza
ZL,N,M . This normalization satisfies an exact recursion eq
tion @9#

ZL,N,M5 (
n50

N

(
m50

M

f ~n,m!ZL21,N2n,M2m , ~24!

which is easily obtained from Eq.~5!, and which can be
iterated on a computer. Doing so, for systems up to sizL
5100 withb54 andc52, yields the distributions shown in
Fig. 6. Four phases are evident. The circles represent de
tiesrA51/25rB and both species are in a fluid phase~phase
I!. The crosses represent densitiesrA51/2 andrB53, and

FIG. 4. Phase diagram for case 2, 2,b,3. Phase I is a fluid
phase; in phase II theB particles form a condensate sustained by
‘‘weak’’ condensate ofA particles, as described in the text. A co
densate ofA particles and fluid ofB particles form in phase III.fA

and fB denote the numbers of particles contained in the cond
sates ofA andB particles, respectively.
7-5
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T. HANNEY AND M. R. EVANS PHYSICAL REVIEW E69, 016107 ~2004!
the distributions are consistent with a condensate ofB par-
ticles on a power law distributed background, and a ‘‘wea
condensate ofA particles containingn;O(L1/2) particles, on
an exponentially distributed background~phase II!. The dia-
monds represent densitiesrA53 andrB51/2 and theA par-
ticles form a condensate on a power law distributed ba
ground, while theB particles form a fluid~phase III!. The
squares represent densitiesrA57/2 andrB57/2 and both
species form condensates on power law distributed ba
grounds~phase IV!.

It is possible to generalize the choice forr (n) in Eq. ~21!
to, for example,r (n);cn2d whered.0 is a constant. This
does not lead to any phase diagrams topologically dist
from those already presented, although it does lead to
possibility of rB converging to a finite value asrA→`, and
vice versa, asz andy→1. Thus the phase diagrams in Fig
2 and 4 may be modified such that the phase boundaries
toward a finite value ofrB asrA→`, and vice versa also in
the case of Fig. 4. Another feature of this generalized cho
for r (n) is that in the phase II, where theB particles con-
dense, the accompanying weak condensate ofA particles
contains a number of particlesn;O(L1/(11d)), as may be
verified using the argument expressed in case 1.

FIG. 5. Phase diagram for case 3,b.3. In region I both species
are in a fluid phase; in region II theB particles are in a condensa
phase sustained by a weak condensate ofA particles; in region III
theA particles are in a condensate phase and theB particles form a
fluid; in region IV both species are in a condensate phase.fA and
fB denote the numbers of particles contained in the condensat
A andB particles, respectively.
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V. RELATION TO THE AHR MODEL

In this section, we show that steady state of the tw
species zero-range process has a mapping on to the s
state of the AHR model.

The AHR model, introduced in Ref.@5#, is a generaliza-
tion of the second-class particle system studied in Ref.@15#.
It is defined on a ring ofL1N1M sites, on which there are
N 1 particles,M 2 particles, andL vacancies~which we
represent by 0’s!. The dynamics are defined by the process

10→01 with rate b,

02→20 with rate a,

12→21 with rate 1,

21→12 with rate q, ~25!

where each exchange takes place between nearest neig
sites. Fora5b51 the model undergoes a transition betwe
a disordered phase (q,1) and a phase separated phaseq
.1) composed of a single domain of each species. The
respondence between the AHR model and the two-spe
zero-range process may be observed in the following wa

We definew($t i%) to be the steady state weight for th
system to be in a configuration$t i%5t1 , . . . ,tL1N1M . The
weights w($t i%) can be obtained using a matrix ansa
@5,14,15#, that is, we write the particle configuration as
product of matrices

$t i%5X1•••XL1N1M , ~26!

where the matrixXi is

Xi5H D if t i51

E if t i52

A if t i50.

Then it can be shown that the steady state weights can
written in the form@14,15#

of
FIG. 6. Log-log plot of on the leftP(n) vs n, and on the rightP(m) vs m, for systems of sizeL5100 andb54 andc52. The circles
correspond to densitiesrA51/25rB ~fluid phase!; the crosses correspond to densitiesrA51/2 andrB53 ~condensate ofB particles is
sustained by a ‘‘weak’’ condensate ofA particles!; the squares correspond to densitiesrA57/25rB ~both species condense!; the diamonds
correspond to densitiesrA53 andrB51/2 (A particles form a condensate!.
7-6
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CONDENSATION TRANSITIONS IN A TWO-SPECIES . . . PHYSICAL REVIEW E 69, 016107 ~2004!
w~$t i%!5Tr@X1•••XL1N1M#, ~27!

provided the matricesD, E, andA satisfy the relations

bDA5A, ~28!

aAE5A, ~29!

DE2qED5D1E. ~30!

These relations are satisfied if we takeA to be the projector
uV&^Wu, where we employ a bra-ket notation to denote
left and right vectorŝ Wu and uV&. With this notation, Eq.
~27! becomes

w~$t i%!5^WuX1•••XL1N1MuV&, ~31!

and if thel th vacancy is at sitekl , then this can be written a
~choosing the normalization̂WuV&51 and using the invari-
ance of the trace under cyclic permutations of theX’s!

w~$t i%!5)
l 51

L

^WuXkl11•••Xkl 1121uV&, ~32!

i.e., the steady state weights assume a factorized form—
factor for each vacancy. Now, to make the connection to
two-species zero-range process, we define the matrixGn,m to
be the sum over all permutations of products ofn D’s andm
E’s. Also, we defineP($nl%;$ml%) to be the probability that,
in between all pairs of vacanciesl andl 11, there are exactly
nl 1 particles andml 2 particles. Hence

P~$nl%;$ml%!5ZL,N,M
21 )

l 51

L

^WuGnl ,ml
uV&, ~33!

whereZL,N,M is a normalization. Equation~33! is identical to
Eq. ~1! if we make the identification

f ~n,m!5^WuGn,muV&, ~34!

and the normalizationZL,N,M then is given by Eq.~5!. This
establishes the mapping.

Thus the steady state of the AHR model can be expres
in a form identical to the steady state of the two-spec
zero-range process if we identify the1 particles with theA
particles and the2 particles with theB particles. The hop
rates of theA and B particles, obtained by substituting E
~34! into Eq. ~2!, are given by

u~n,m!5
^WuGn21,muV&

^WuGn,muV&
ev

01610
e

ne
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and

v~n,m!5
^WuGn,m21uV&

^WuGn,muV&
. ~35!

Note that because the mapping specifiesf (n,m) ~and not the
hop rates! the hop rates are guaranteed to satisfy the c
straint equation~4!. Also, this is not a mapping for the
dynamics—rather, it is a mapping between steady sta
which have the same form.

The matrix elementŝWuGn,muV& are known exactly@16#
and assume different asymptotic forms depending on the
ues of a, b, and q. Thus the phase behavior of the AH
model is observed in the two-species zero-range proces
using these different forms to determinef (n,m) using Eq.
~34!. We note that the resulting values of the hop rates
different to those studied earlier in this paper: the hop ra
as determined via the mapping to the AHR model obey
symmetryu(n,m)5v(m,n) under the interchangea↔b.

VI. CONCLUSION

We have shown how the steady state of the two-spe
zero-range process can undergo a number of condens
transitions. A single particle of one species was found to
able to induce condensation in the other above a critical d
sity. Next, for finite densities of both species, we investiga
a case where the hop rates of the two species were coupl
a nontrivial way. Three distinct condensate phases eme
and the conditions on the hop rates leading to such ph
were presented for quite general rates. This generality s
gests that the transition mechanisms are robust.

There remain a number of outstanding questions. A m
detailed understanding of the phase where the condensa
sustained by a weak condensate of particles of the other
cies is desirable. It is also unclear whether there exist furt
couplings between the particle species which might lead
new transitions. This could require analysis of the model
dynamics which do not satisfy the constraint~4!; such inves-
tigation may also yield insight into the structure of the stea
state when the factorized form does not hold.
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